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1. Introduction

Uncertainty may be caused by the ambiguity in the terms

used to describe a specific situation. It may also be caused

by skepticism of rules used to describe a course of action or

by missing and/or erroneous data. [For a small sample of work

done in the area, the reader is referred to (Arciszewski &

Ziarko 1986), (Bobrow, et.al. 1986), (Wiederhold, et. al.

1986), (Yager 1984), and (Zadeh 1983).]

To deal with uncertainty, techniques other than classical

logic need to be developed. Although, statistics may be the

best tool available for handling likelihood, it is not always

adequate for dealing with knowledge acquisition under

uncertainty. [We refer the reader to Mamdani, et. al. (1985)

for a study of the limitations of traditional statistical

methods.]

Inadequacies caused by estimating probabilities in

statistical processes can be alleviated through use of the

Dempster-Shafer theory of evidence. [ For a sample of works

using the Dempster-Shafer theory see (sharer 1976), (de

Korvin, et. al. 1990), (Kleyle & de Korvin 1989), (Strat

1990), and (Yager).] Fuzzy set theory is another tool used to

deal with uncertainty where ambiguous terms are present.

[Articles in (Zadeh 1979, 1981 & 1983) illustrate the numerous

works carried out in fuzzy sets.] Other methods include rough

sets, the theory of endorsements and nonmonotonic logic. [The

work on rough sets is illustrated in (Fibak, et. al. 1986),
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(Grzymala-Busse 1988), and (Mrozek 1985 & 1987). Also, see

(Mrozek 1985) and (Pawlak 1982) for the application of rough

sets to medicine and (Arciszewski & Ziarko 1986) and (Pawlak

1981) for applications to industry.]

J. Grzymala-Busse (1988) has defined the concept of

lower and upper approximation of a (crisp) set and has used

that concept to extract rules from a set of examples. We will

define the fuzzy analogs of lower and upper approximations and

use these to obtain certain and possible rules from a set of

examples where the data is fuzzy. Central to these concepts

will be the idea of the degree to which a fuzzy set A is

contained in another fuzzy set B, and the degree of

intersection of set A with set B. These concepts will also

give meaning to the statement; A implies B. The two meanings

will be: i) if x is certainly in A then it is certainly in B,

and 2) if x is possibly in A then it is possibly in B. Next,

classification will be looked at and it will be shown that if

a classification is well externally definable then it is well

internally definable, and if it is poorly externally definable

then it is poorly internally definable, thus generalizing a

result of Grzymala-Busse (1988). Finally, some ideas of how to

define consensus and group opinions to form clusters of rules

will be given.

2. Results

We now recall some basic definitions such as lower and
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upper approximations and the concept of an information system.

Let U be the universe. Let R be an equivalence relation

on U. Let X be any subset of U. If [x] denotes the equivalence

class of x relative to R, then we define

R(X) = (x _ U/[x] c X} and

R(X) = (x • U/Ix] n X _ _).

R(X) is called the lower approximation of X and R (X) is

called an upper approximation of X. Then R(X) c X c R(X). If

_R(X) = X = R(X), then X is called definable.

An information system is a quadruple (U,Q,V, T) where U is

the universe and Q is a subset of C u D where C n D = e. The

set C is called the set of conditions; D is called the set of

decisions. We assume here that Q = C. The set V stands for

value and _ is a function from UxQ into v where _ (u,q) denotes

the value of attribute q for element u. The set C induces

naturally an equivalence on U by partitioning U into sets over

which all attributes are constant. The set X is called roughly

C-definable if

R(X) _ e and R(X) _ U.

It will be called internally C-undefinable if

R(X) = e and R(X) _ U.

It will be called externally C-undefinable if

R(X) , e and R(X) = U.

Fuzzy sets defined

Next, we define two functions on pairs of fuzzy sets that

will be of importance in the present work.
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I(AcB)=inf Max {i - A(x), S(x)) (I)
X

J(A#B)=Max Min (A(x), B(x) ). (2)
X

Here A and B denote fuzzy subsets of the same universe. The

function I (A c B) measures the degree to which A is included

in B and J(A # B) measures the degree to which A intersects B.

It is important to note that for the crisp case, I(AcB) =i

iff AcB and is 0 otherwise. Similarly, J(A#B)= 1 iff A nB _ e.

The goal is to define the fuzzy terms involved in the

decision as a function of the terms used in the conditions.

This is accomplished as a function of how much the decision

follows the conditions. Let (B_) be a finite family of fuzzy

sets. Let A be a fuzzy set. By a lower approximation of A

through {B i), we mean the fuzzy set

R (A) = u I ( B| c A ) B i (6)-- i

The decision making process may be simplified by disregarding

all sets B, if I ( B i c A ) is less than some threshold u.

Then,

= u I ( B i c A ) B i (7)R (A) a i

over all B_ for which I ( B i c A ) >_ a.

Similarly, we can define the upper approximation of A

through {B i) as

= u J ( B i # A ) B_ (8)R (A) a i

over all B i for which J ( B i # A ) > u.

The operators I and J will yield two possible sets of

rules: the certain rules and the possible rules. It is

straightforward to see that if (Bi} are crisp equivalency
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classes we get the lower and upper approximations as defined

by Grzymala-Busse (1988).

Determininq Fuzzy Rules

We now show how rules can be obtained from the raw data

given in Table 1 after converting this data according to the

professor's evaluation of the performance of the students,

relative to exams high, exams low, project high, project low,

and his belief with respect to each student getting an A. (See

Table 2 for the converted data.)

Table I: Production/Operations Management Grades

Student Exams (2) Project Course Grade

(Written & Oral)

1 75 85

2 94 87

3 88 89.3

4 79.5 95

5 85 97

6 56.5 88.6

7 65 91.6

8 49 76.7

9 63.5 89.1

i0 57 76.9

ii 70 98

12 93 88

75.36

89.53

89.93

78.06

90.85

60.89

76.15

59.22

69.99

55.77

80.3

90.1

It can be observed that none of the course grades was a

strong predictor of "success". In other words, the course

grades of 90 or slightly better than 90 as a "quality" measure

of the final product did not allow the professor strong belief

in the awarding of an "A" to the student. The professor's

belief in these grades being the best in the class and

therefore deserving of an "A" grade was approximately .67. The
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belief in the lower scores is scaled downward from .67 to .41

(the latter representing belief that 55.77 will be the top

score in the class.)

The professor recognized the high exam scores of 94 and

93, with belief of .99/EH and .98/EH, respectively (EH: Exams

High). The low exam score of .49 was designated .92/EL (EL:

Exams Low) by the professor. Since all project grades were

relatively close and relatively high, the professor saw little

differentiation between the "top" score and the other scores.

The "top" project score is .54 high and .46 low. (.54/PH and

.46/PL, respectively) This contrasts with the worse project

score being .43/EH and .59/EL, where .59 is the highest belief

that a project grade is a "low" score. This approach was

considered to be consistent since although exam grades varied

from 49 to 94, no project grade was below a 76.7. It was felt

that keeping the project grades from being too strongly biased

toward "high" would prevent the decision rules from being

overly biased toward high project grades. Enough

differentiation was considered to allow the rough set

formulation to consider both attributes in the decision rules

for awarding a "top" score of "A" to a student. Each student's

scores were translated into belief with respect to EH, EL, PH,

PL and "A".

For our example of twelve POM students, Xl, x2,...,x12,

we let EH:exams high PH:project high

EL:exams low PL:project low "A": Top Grade



Thus, for the first student, Xl, the belief that the exams

were high is .79/EH, and that the exams were low is .60/EL;

that the project grade was high is .47/PH and that it was low

is .53/PL. The strength of belief for an A is .56/"A". In

addition, EH may be viewed as a fuzzy set of students, such

that EH = .79/x I + .99/x 2 +...+ .98/x12, where x 2 is an

excellent example of EH (.99) while x s is not such a good

example (.52). (See Table 2 below for all the professor's

evaluative scores.)

Table 2: Professor's Evaluative Scores

Student EH EL PH PL I] "A"

1 .79 .60 .47 .53

2 .99 .48 .48 .52

3 .93 .51 .50 .50

4 .84 .57 .53 .47

5 .89 .53 .54 .46

6 .58 .81 .49 .51

7 .68 .69 .51 .49

8 .52 .92 .43 .58

9 .67 .71 .50 .51

I0 .60 .79 .43 .59

II .74 .64 .54 .46

12 .98 .48 .49 .51

.56

.66

.67

.58

.67

.45

.56

.44

.52

.41

.59

.67

Using our rough set theory formulas as they have been

developed for fuzzy systems of attributes and decisions, we

compute:

I(EH c "A") = .41

I(EL c "A") = .41

I(PH c "A") = .51

I(PL c "A") = .42

I(EH _ PH c "A") = .51

I(EH N PL c "A") = .42

I(EL N PH c "A") = .51

I(EL _ PL c "A") = .42

with a lower approximation for u = .50 defined by:
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=.51 PH u .51 (EH n PH).

The extracted rules would imply that high project scores

and high exam scores both impact a high course grade with

certainty .51.

Possibility rules can be determined by computing:

J(EH #"A") = .67 J(EH _ PH # "A") = .54

J(EL # A") = .59 J(EH n PL # "A") = .53

J(PH #"A") = .54 J(EL _ PH # "A") = .54

J(PL #"A") = .53 J(EL n PL # "A") = .53

with an upper approximation at u = .60 defined as:

= .67 EH.

Thus, we can see that the factors dictating the "best"

in the class are:

I) If project grades are high, an "A" score will be attained.

(Certainty = .51)

2) If project grades and exam grades are high, an "A" score

will be attained. (Certainty = .51)

3) If exam grades are high, an "A" score will be attained.

(Possibility = .67)

Indeed, these rules reflect the fact that exam grades

are more heavily weighted than the project grade toward

determining the final course grade. Additionally, these two

grades comprise the majority of the weighted scores from which

the course grade is calculated.

Belief & Possibility

We can use the functions I and J to determine two
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meanings of A implies B. The belief that if x is certainly in

A then it is certainly in B is given by:

I[ B (A) c B (B)] (9)

and the belief that if x is possibly in A then it is possibly

in B can be defined by:

J[ R (A) # R (B) ] (i0)

This interpretation follows from the fact that B(A) are

objects certainly in A and R (A) are objects possibly in A. We

now turn to the study of classifications.

Classifications

The study of classifications is of great interest

because in learning from examples, the rules are derived from

classifications generated by simple decisions. In this

section, we turn our attention to classifications. Of course,

the traditional meaning is to partition. In our setting, we

have ill-defined boundaries, so we need to relax the concept

of partitions by requiring that the sets not overlap too much.

As earlier, consider a finite family of fuzzy sets,

{Be}. Let _ denote a finite family of fuzzy sets

= {At, A 2, ..-, A n )

We define

P_ = { E(AI) _, ..., B(A,)a),

P_. = {--R(A,)a, ...,--R(A,),)

where the lower and upper e-approximations are generated by

the finite sequence {Be).

We can develop the following relationship:

63



d ° [A = B] = Min ( I (A c B), I( B c A))

using the following definitions:

d° [Pza = _] = Min (d ° [R(Ak) a = Ak])
k

d°[P_a = z] = Min(d°[R(At)a = At])
t

will be called {B_) definable to the degree B with

threshold _ if

Min ( d°[Pz_ = z], d°[P_ = _]) > 6.

If we define

d°[-P_a = P_] = Min ( d °[R(At) a =R(At)_]),
t

it can be shown that if S > ½, then

d° [P_a = _] > S and d ° [P_a = _] > S imply that

d ° [P_a = P_a] > S.

Recall that the following result is shown in information

systems. For classifications, if PAt is the universal set for

each k, then PA k is empty for each k. Also, if PA k is nonempty

for each k, the--PA k is not the universal set for any value of

k. We would like to get the analog of this by showing if R(Ak) a

"has some substance" for some k, then R(A]) a for j , k is "not

too large", and if R(Ak) a is "fairly substantial", _R(A]) a for

j _ k cannot be "too large". In this sense, the results of

Grzymala-Busse (1988) will be generalized.

We would like {At) and (Bi) to somewhat approximate a

partition. We define the following two conditions:

(*) For every 0 < e < i, there exists 0 < 6 < 1 such that if

Bi(x0) > _, then B_(x0) < 1 - 6 for _ , i.

(**)For every pair j,k with j # k and all x, Ak(x ) +Aj(x) < i.
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Conditions (*) and (**) both express that the overlap is not

too large and obviously hold for partitions. We note that if

(**) holds for {Bi) then it implies (*). Indeed, in this case

we pick 6 = _. Thus, the results that follow may be shown

assuming condition (**) for {Bi_ and {Ak}.

We first show that under conditions (*) and (**) ,

whenever R(Ak) _ is bounded away from 0, then R(Aj) a for j _ k

is bounded away from i. Suppose _R(Ak)a(x0) > _, then for some

i, I(B i c Ak) > E and Bi(x0) > e, so for t _ i from condition

(*), we have Bt(x0) < 1 - 6. For any t _ i we have

J(Bt # Aj)Bt(x0) < 1 - 6. Now

J(B i # Aj) = 1 - I(B i c _Aj) ;

I(B i c Ak) = Min Max {l-Bi(x), Ak(x)};
X

I(B i c _Aj) = Min Max {I-B i(x), l-Aj(x)).
X

Condition (**) implies I(B i c Ak) < I(B i c _Aj) for all j _ k.

From the above it follows that J(B| # Aj) < 1 - _. Thus,

R(A])_(x0) < Max { i-E, i-6).

We now show a rough converse to the above. If R(Ak) is

bounded away from 0, then for j _ k, R(Aj) a is bounded away

from i. Suppose R(Ak),(x0) > 1 - E for some k, then

J(B i # Ak)Bi0(x0) > 1 - _ for some i0.9

Pick j _ k. Then

I(B i0C Aj ) = 1 - J(B i # _Aj) .

Now, J(B i # _A]) = Max Min (Bi0(x) 1- Aj(x)};0 x '

J(B i # Ak) = Max Min {Bi0(x), Ak(X ) }.0 x

By (**) it follows that J(B i # ) > J(B_ )0 _Aj _ # A k .
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From above, I(B i0c Aj) < 1- J(B i °# Ak) _< E.

Since B i 0(x0) >i - e, by (*), Bi(x0) <8 for i _ i0 where 0<0 <i.

Therefore, R(Aj)¢(x0) < Max { E,8}.

Consensus

We can define consensus between two rows of a table by

Consensus [Rowi, Rowj] = Min { I[Row i c Rowj], I[Rowj c Rowi] }

Here, Row i and Rowj are considered to be fuzzy subsets of the

set of all attributes and decisions. If y is some

predetermined threshold, we pick some x I and then all xj for

which Consensus [Rowl, Rowj] _ 7. If any of the x's are left

over, we start again with the first x available. We thus get

fuzzy sets $I, $2, ..., S_ where _ (_i) = 1 for some _i ( which

we might call the leader of Si) and _%(x) = Consensus (li, x)

provided _ (x) exceeds y. Within each S i we then can recompute

the symptoms/decisions for xj taking _% (xj) into account

If 1 S i S _ , then we have £ (aggregated) decisions and using

fuzzy cardinality we can compute the "firing strength" of each

block of rules. This approach has the advantage of taking

consensus of opinions into consideration in the decision. The

detailed methodology will be discussed in a later paper.
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